TechnologyTell

Honda Fit EV part of “zero carbon living” concept home

Sections: Fuel Economy

0
Print Friendly
Honda Smart Home Establishing Press Photo

Honda Smart Home U.S. opened its doors March 25 in Davis, California. The efficiency-minded home serves as a “living laboratory” and seeks to address two major sources of U.S. CO2 emissions, according to Honda: cars and homes. (Dorian Troy photo courtesy Honda).

Honda this week announced a “zero carbon living” concept home that produces more energy than it uses — including the fact that it produces enough energy to power a Honda Fit EV for daily driving duty.

The press release from Honda said the concept home is located on the West Village campus of the University of California, Davis and opened Tuesday, March 25. The home, formally known as Honda Smart Home US, began construction in April, 2013. It allows the home’s occupant to use less than half of the energy of a similarly sized new home in the Davis area for heating, cooling, and lighting, the release said. The home reportedly is also three times more water-efficient than a typical U.S. home.

Steve Center, vice president of the Environmental Business Development Office of American Honda Motor Co., Inc, said, “With the Honda Smart Home, we’ve developed technologies and design solutions to address two primary sources of greenhouse gas emissions – homes and cars. Ultimately, our goal is to contribute to the public dialogue about addressing CO2 emissions.

Honda said the home is a sort of test bed:

In addition to showcasing Honda’s vision for sustainable, zero-carbon living and personal mobility, the home will function as a living laboratory where the company, along with researchers from UC Davis and Pacific Gas and Electric (PG&E), will evaluate new technologies and business opportunities at the intersection of housing, transportation, energy and the environment

The release said together, cars and homes account for approximately 44% of U.S. greenhouse gas emissions and called technologies that allow for distribution of renewable energy to cars and homes “one of the key potential pathways to address climate change.”

So what about the tech behind the home?

Honda Smart Home battery storage

Honda Fit EV, left, sits in the garage where the battery energy storage system — which uses the same lithium ion cells used in the Fit EV — resides. (Dorian Toy photo courtesy Honda)

Honda said it employs the automaker’s Home Energy Management System (HEMS), a proprietary hardware and software system that the company said monitors, controls, and optimizes electrical generation and consumption throughout the home. A 10 kWh battery energy storage system reportedly is located in the garage. The release said the battery uses the same lithium-ion cells that are used in the Honda Fit EV and allows stored solar energy to be used at night, when household demand typically peaks and electric vehicles are usually charged. HEMS leverages the battery to balance, shift, and buffer loads to minimize the home’s impact to the electric grid, Honda said. The system will also enable Honda to evaluate the second life, or re-use, of EV batteries in grid applications, home-to-grid (H2G), connectivity, and other concepts, according to the release. This is an idea we’ve seen discussed in relation to the Chevy Volt not so long ago, and it’s encouraging to see other automakers working on a way to give EV batteries a second life.

Honda said HEMS also is capable of improving grid reliability by automatically responding to demand signals and providing other grid services. If the electricity grid is overloaded, for example, Honda said its Smart Home is capable of shedding its load and even supplying power back to the grid. This type of smart grid connectivity will enable the mass deployment of electric vehicles and renewable energy without sacrificing grid reliability, the release said.

You want a more exhaustive look at the technologies and efficiency gains achieved within the Smart Home? Okay. We quote directly from the release:

Sustainable Features
Honda Smart Home US brings together innovative technology and the latest green building concepts:

Solar Photovoltaics (PV)
A 9.5kW solar photovoltaic (PV) system mounted on the roof will generate more energy than the home and Fit EV consume on an annual basis, due in large part to the efficient design of the home. All of the energy for space heating, space cooling, ventilation, lighting, hot water, appliances and consumer loads, in addition to the transportation energy for the Honda Fit EV, is supplied by the solar panels on the home.

DC-to-DC Electric Vehicle Charging
The Honda Fit EV included with the home has been modified to accept DC power directly from the home’s solar panels or stationary battery, eliminating up to half of the energy that is typically lost to heat during DC-to-AC and AC-to-DC power conversion. When the solar panels are generating electricity at full capacity, the vehicle can fully recharge in approximately two hours directly from sunlight.

Geothermal Radiant Heating & Cooling
In homes and cars, heating and air conditioning systems consume significant amounts of energy. In the ground beneath Honda Smart Home’s backyard, eight 20-foot deep boreholes allow a geothermal heat pump to harness the ground’s relatively stable thermal sink to heat and cool the home’s floors and ceiling throughout the year. Researchers from UC Davis will evaluate the performance of the system to determine its adaptability to mainstream use.

Pozzolan Infused and Post-Tensioned Concrete
Concrete accounts for approximately 5% of global, man-made CO2 emissionsii. This large CO2 footprint is a result of producing cement – the concrete’s “glue” – by heating limestone to more than one thousand degrees Celsius. This heating requires the burning of fossil fuels, while the chemical reaction itself also releases CO2. A naturally-occurring substance called pozzolan was infused into the Honda Smart Home’s concrete to replace half of the cement typically needed. A technique called post-tensioning, which uses steel cables to compress the concrete slab, was also used to reduce the amount of concrete and steel needed. Watch videos on pozzolan and post-tensioning.

Advanced Lighting
The LED lighting used throughout the home is not only five times more energy-efficient than conventional lighting; it is also designed to support the health and wellness of the home’s occupants. Honda worked with researchers from the California Lighting Technology Center at UC Davis to explore new circadian color control logic.
Mimicking the natural shifts in daylight that occur from morning to night, the circadian-friendly lighting design allows occupants to select lighting scenes that complement occupants’ circadian rhythms and support nighttime vision. The amber hallway night lights, for example, provide enough light to navigate through the home in darkness without depleting a photopigment in the human eye called rhodopsin that helps humans see in low-light conditions. This allows occupants to move about safely and return to sleep quickly and easily. Exposure to bright, blue-rich light during the day helps put body and mind in an alert and energetic state, but at night, blue light can disrupt circadian sleep cycles. Therefore Honda Smart Home minimizes the use of blue light at night.

Passive Design
Honda Smart Home is designed to be extremely energy efficient by taking into account local weather conditions, sun direction and the home’s outer shell. Known as “passive design,” these techniques reduce the energy needed for heating and cooling while maintaining comfortable living conditions.

The Honda Smart Home’s south-facing windows are optimized for heating and cooling, while the north-facing windows are positioned to maximize natural light and ventilation. This will keep the home naturally cool in the summer and warm in the winter. Double stud walls, cool roofing material and a fully insulated concrete slab all contribute to the home’s energy efficiency.

Sustainable Materials & Waste Management
Sustainable materials were used throughout the construction process. Rather than cover the concrete foundation with wood, diamond pads were used to create a smooth, polished finish. For the roof, metal was selected, which is more recyclable than asphalt. All lumber used in the construction process was sustainably harvested from forests certified by the Forest Stewardship Council (FSC), while advanced framing techniques were used to reduce the amount of material needed. Honda Smart Home will seek a number of “green” certifications, including US Green Building Council’s LEED, National Association of Home Builders’ National Green Building Standard and U.S. EPA’s Energy Star. Finally, 96% of the construction waste associated with the project, including drywall, brick, plastics and lumber, was recycled.

Surpassing California’s 2020 Zero Net Energy Goal
The Honda Smart Home US was designed to address specific challenges associated with the transportation and energy sectors in the United States. California’s Energy Efficiency Strategic Plan, for example, sets a goal for all new homes to be zero net energy beginning in 2020.iii Through a combination of advanced technology integration, energy efficiency measures and sustainable design techniques, Honda Smart Home surpasses that goal by producing enough energy to power the home and an electric vehicle on a daily basis.

Sharing Data and Technical Details
Hundreds of channels of energy data generated by sensors throughout the house will be shared with PG&E and UC Davis researchers. In addition, Honda’s Environmental Business Development Office, in conjunction with Honda R&D, will use the home as a living laboratory to test new technologies and evaluate new environmental business opportunities.

Regular updates on the home can be found at www.hondasmarthome.com. Contribute to the conversation on Facebook and Twitter using the hashtag #HondaSmartHome.

By The Numbers: Emissions and Water Consumption
Honda Smart Home is expected to generate a surplus of 2.6 megawatt-hours of electricity over the course of a year, while a comparable home will consume approximately 13.3 megawatt-hours. This results in a net offset of nearly 13,100 pounds of CO2 per year, even when taking into account California’s relatively clean electricityiv. The excess energy anticipates potential future increases in energy needs, such as the addition of more occupants or electric vehicles to the home, and an increased daily commute.

The savings are even more dramatic when you consider Honda Smart Home produces its own transportation fuel. CO2 savings rise to more than 23,500 pounds per year versus a comparable home and vehiclev.

Honda Smart Home is three times more water-efficient than a typical U.S. household.  In a typical home, the toilet alone can use 27 percent of household water consumptionvi. Dual-flush toilets with WaterSense certification, along with low-flow faucets in the sinks and showers and a high-efficiency washing machine and dishwasher all contribute to water savings. A technique called xeriscaping was used in the garden, where 30% of a typical home’s water is consumed.   Plants that thrive naturally in arid climates were selected, while filtered greywater recycled from the home is the only source of water other than rain.

0
Print Friendly